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Lecture 27 

Physics 404 

 

How do we understand the origins of phase transformations?  The ideal gas law can be modified 
to include interactions between particles that lead to phase transformations.  Start with the Helmholtz 

free energy for an ideal gas:                
  

 
    .  We will modify this in two ways.  The 

inter-molecular potential energy of most substances looks like this: 

 

At short distances there is a strong inter-molecular repulsion due to Coulomb interaction and the Pauli 
exclusion principle between the electron clouds.  This shows up as the strong upturn to positive values 
of the inter-molecular potential.  At larger separations there is a weak attractive interaction between 
the molecules.  This attraction can lead to clustering and clumping of the molecules at low 
temperatures, and the development of a condensed phase (liquid or solid). 

 We include the effects of short range repulsion by reducing the volume by the excluded volume 
per molecule, which we call “ ”.  Thus the volume that appears in the free energy above will be replaced 
by the value     , for a system of   particles.  The value of   is expected to be on the order of a few 
cubic Angstroms or so. 

 The attractive potential will reduce the energy of a single particle by an amount    

           
 

 
, where      is the intermolecular potential,      is the number of particles per unit 

volume at distance   from the molecule, and the integral is taken over the attractive part of the 
potential.  This integral is hard to carry out because it requires knowledge of the structure of the fluid to 
calculate     .  We shall use the “mean field approximation” and ignore these details, replacing      
with it’s overall average      .  Then the integral is just a property of the intermolecular potential: 

           
 

 
, so that        .  If we do this calculation for all the atoms, one introduces a 

factor of    , since each atom is included in   such integrals exactly twice.  The energy to be added to 

the free energy above is    
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 With these two changes, the modified free energy of an ideal gas with interactions is: 

             
  

 
           

  

 
 .  The equation of state of this new and improved gas is 

obtained from the calculation of pressure:    
  

  
     

  

    
 

  

   .  Re-arranging, we come up with 

the van der Waals equation of state:    
  

             .  Note that this reduces to the ideal gas 

law when      .  The parameter “ ” effectively adds an additional pressure on the gas due to 
attractive forces it creates between the molecules.  Typical values for   are 2.5 eVÅ3 for N2, 10 eVÅ3 for 
H2O, and 0.063 eVÅ3 for He. 

 Define the “critical” pressure, volume and temperature as    
 

     ,       ,    
  

    
, and 

the vdW equation of state becomes prettier:   
 

  
   

  

 
 
 
  

 

  
 

 

 
  

 

 

 

  
.  The isotherms of this 

equation of state are shown on the class web site.  It is found that for 
 

  
   that the        curves are 

monotonically decreasing.  For 
 

  
   it is found that there are two points on the      curves where the 

derivative 
  

  
    , called “spinodal points”.  In between these points on the isotherm the slope of the 

     curve is positive, which is un-physical.  We will fix this problem later.  There is one special isotherm 

at 
 

  
   for which there is a single point at which both 

  

  
     and 

   

       .  This occurs precisely at 

the point     ,     , and     , which is the critical point identified in the last lecture.  Hence the 
vdW equation of state describes the liquid/vapor phase transition and the associated critical point. 

 By calculation, one finds that 
    

   
 

 

 
       for the vdW model.  Real gases show values for 

this quantity ranging from 0.277 for CO2 up to 0.327 for He, showing that the vdW model is not too far 
off the mark.   

 The van der Waals equation of state can be interpreted as a “law of corresponding states”: 

    
 

        
 

 
  

 

 
  , with the definitions of the dimensionless quantities    
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, and    

 

  
.  

This law is ‘universal’ in the sense that it applies to the liquid-vapor transformation of all materials.  The 
details of each particular material are “scaled away” in the critical parameters (  ,   ,   ) to create a 
material-independent equation of state.  The universal properties of the gas depend only on how far 
away the system is from its critical values of pressure, volume and temperature.  The class web site 
(slide 2) shows experimental data from a variety of materials that have been scaled onto universal 
curves using the law of corresponding states.  

 The unphysical part of the vdW isotherms where the slope of the      curve is positive can be 
eliminated using the “Maxwell construction”.  One observes that in coexistence of vapor and fluid the 
chemical potential (hence the Gibbs free energy per particle,    ) of these two phases must be equal, 

and on an isotherm with a fixed total number of particles        , hence    
   

   
           

     
   

   
  .  In other words, we expect the Gibbs free energies to be equal on either end of the 

coexistence isotherm in the     plane.  One can choose a certain constant pressure   and carry out 

this process to see in the integral     
   

   
   or not.  There will be one value of pressure for a given 

isotherm that satisfies this equation.  That pressure becomes the coexistence pressure for that 

http://www.physics.umd.edu/courses/Phys404/Anlage_Spring11/vdW%20Isotherms.pdf
http://www.physics.umd.edu/courses/Phys404/Anlage_Spring11/vdW%20Isotherms.pdf
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particular temperature.  This process is repeated for each temperature below    to create a final     
phase diagram describing the liquid-vapor phase transition, as shown on the class web site (see slide 3). 

http://www.physics.umd.edu/courses/Phys404/Anlage_Spring11/vdW%20Isotherms.pdf

